Altered Metabolism of Dopamine in the Midbrain of Mice Treated with Tributyltin Chloride via Subacute Oral Exposure

Masashi Tsunoda1,2*, Nobuhiro Konno3, Ken Nakano4 and Yang Liu5

1Department of Public Health, School of Medicine, Fukushima Medical University, Fukushima, Japan
2Department of Preventive Medicine and Public Health, School of Medicine, Kitasato University, Kanagawa, Japan
3Koriyama Women’s University and College, Fukushima, Japan
4Fukushima Institute of Public Health, Fukushima, Japan
5Environmental Health, China Medical University, Shenyang, China

(Received December 3, 2003; accepted April 26, 2004)

Key words: tributyltin, body weight, dopamine, homovanillic acid, central nervous system

Tributyltin (TBT) compounds have been detected in fish and shellfish. One of the targets of TBT compounds is the central nervous system. Alterations in the levels of neurotransmitters and their metabolites, and ratios of the levels of neurotransmitters to those of their metabolites have been used as indexes of neurotoxicity. We evaluated the neurotoxicity of TBT compounds in mice following subacute oral exposure by determining the levels of neurotransmitters and their metabolites in discrete brain regions. Male BALB/c mice were exposed to 0, 1, 5, 25, or 125 ppm TBT chloride in their feed for one month. Following the treatment period, their brains were removed and dissected into the cerebrum, cerebellum, medulla oblongata, midbrain, corpus striatum and hypothalamus. The levels of norepinephrine, dopamine (DA), dihydroxyphenylacetic acid, homovanillic acid (HVA), serotonin, and 5-hydroxyindolacetic acid were determined in different brain regions by high-performance liquid chromatography (HPLC). The mean body weight of mice treated with 125 ppm TBT was significantly lower than that of the control from day 5 to day 16 during the treatment period. The HVA/DA ratio in the midbrain of the 125 ppm-treated group was significantly higher than those of other treatment groups, and tended to be higher than that of the control. TBT may affect DA metabolism in the brain, especially in the midbrain.

*E-mail: mtsunoda@med.kitasato-u.ac.jp