Mice Strain Differences in Effects of Fetal Exposure to Diesel Exhaust Gas on Male Gonadal Differentiation

Seiichi Yoshida¹,²,³*, Miki Yoshida¹, Isamu Sugawara³,⁴ and Ken Takeda¹,³

¹Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-0022, Japan
²Department of Health and Sciences, Oita University of Nursing and Health Sciences, 2944-9 Megusuno, Oita, Oita 870-1201, Japan
³Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
⁴Department of Molecular Pathology, The Research Institute of Tuberculosis, 3-1-24 Matsuyama, Kiyose, Tokyo 204-0022, Japan

(Received May 25, 2005; accepted September 14, 2005)

Key words: diesel exhaust gas, fetal exposure, strain differences, Ad4BP/SF-1, müllerian inhibiting substance

We have shown that in ICR pregnant mice exposed to diesel exhaust (DE), mRNA expression of müllerian inhibiting substance (MIS) and a steroid hormone transcription factor (Ad4BP/SF-1), which are essential in male gonadal differentiation, decreases in a DE concentration-dependent manner. To further investigate whether these effects differ among strains, we conducted the present study in 3 different strains: ICR mice, ddY mice, and C57BL/6J mice. The response to DE exposure differed among the 3 strains. In C57BL/6J male fetuses, only MIS mRNA expression significantly decreased, and in ddY male fetuses, there was no change in either MIS or Ad4BP/SF-1 mRNA expression. Although there was no definite correlation between mouse strain characteristics and differences in the effects of DE, our findings suggest strain-related variations in DE sensitivity with respect to gene expression regulating male gonadal differentiation.

*E-mail: syoshida@oita-nhs.ac.jp