
Akihiko Saikubo*, Kazuhiro Kanda, Masahito Niibe and Shinji Matsui

Laboratory of Advanced Science and Technology for Industry, University of Hyogo,
3-1-2 Koto, Kamigori, Hyogo 678-1205, Japan

(Received 22 September 2006; accepted 15 November 2006)

Key words: near-edge X-ray absorption fine structure, synchrotron radiation, diamond-like carbon thin film, local structure

Local structures of diamond-like carbon (DLC) films formed by various methods were studied by near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy. The DLC films are characterized by the sp^2/sp^3 ratio, which influences the mechanical and electronic properties. NEXAFS spectroscopy is sensitive to the sp^2/sp^3 ratio, because the isolated peak corresponding to the 1s→π^* resonance transition can be observed. Carbon K-edge NEXAFS spectra for DLC thin films, which were synthesized by various methods, were measured using the total electron yield mode in the range of 275 eV–320 eV. A peak due to the coupling of carbon with oxygen was observed in the spectra of some DLC films, whereas it was not observed in the spectra of hydrogenated carbon films formed by RF sputtering. The obtained relative sp^2 contents of the DLC films were distributed in the range of \approx20%. The minimum sp^2/sp^3 ratio was obtained from DLC films formed by vacuum arc deposition from graphite, and large sp^2/sp^3 ratios were obtained from DLC films formed by plasma chemical vapor deposition from hydrocarbons. The local structure of a DLC film was concluded to depend on the synthesis method, and in particular, the carbon source material.

*Corresponding author: e-mail: rk051002@stkt.u-hyogo.ac.jp