A New Process Technique for Complementary Metal-Oxide-Semiconductor [CMOS] Compatible Sensors

Chin-Shown Sheen1,2 and Sien Chi1

1Institute of Electro-Optical Engineering, National Chiao Tung University,
2Opto Technology Corporation No. 8, Innovation Rd. 1, Hsinchu SBIP, Hsinchu, Taiwan, R. O. C.

(Received August 17, 2000; accepted January 20, 2001)

Keywords: sacrificial, CMOS, thermoelectric, sensor

A new sacrificial-etching-window (SEW) structure is reported for the first time, which can be used for most complementary metal-oxide-semiconductor (CMOS) compatible sensor structures. Using a buried sacrificial layer, the etching windows of the substrate can be extended beneath the membrane. The SEW technique combines the advantages of both surface micromachining by using a sacrificial layer structure and bulk micromachining by anisotropic etching of a silicon substrate. Using the SEW structure, one can speed up the etching rate and design a larger membrane with a larger active area. Several sensors are fabricated by 1.2 μm industrial CMOS IC technologies combined with subsequent anisotropic front-side etching stops. Three kinds of SEW thermoelectric sensors are reported in this paper, and the characteristics of the sensors are analyzed and measured.

*Corresponding author, e-mail address: 2118@opto.com.tw