Optical Current Measurement System Using Faraday Crystal, Polarization-Maintaining Fiber and Faraday Rotator (Theory and Experiment)

Takashi Hirose, Tatsuo Takada and Yoshihiro Murooka

Musashi Institute of Technology,
1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
\(^1\)Shibaura Institute of Technology,
3-9-14 Shibaura, Minato-ku, Tokyo 108-8548, Japan

(Received March 14, 2001; accepted September 14, 2001)

Key words: optical measurement, Faraday effect, polarization-maintaining fiber, Faraday rotator

With advancing opto-electronic techniques, a current sensor consisting of a Faraday crystal has attracted great interest for measuring currents flowing at a high potential, such as in a UHV (ultra-high-voltage) transmission line, because the Faraday crystal is a kind of insulator having optical transparency for the laser beam. But there are some problems in system stabilization, for example: intensity fluctuations of the light source, the birefringence of optical elements and also optical strains in the longer fiber cable. Therefore, we have developed a new current measurement system associated with both azimuth angle modulation and P- and S-polarized light division methods.