Dependence of the Anisotropy of Wet Chemical Etching of Silicon on the Amount of Surface Coverage by OH Radicals

Miguel A. Gosálvez, Adam S. Foster and Risto M. Nieminen

Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, 02015 Espoo, Finland

(Received September 19, 2002; accepted January 20, 2003)

Key words: anisotropic etching, atomistic simulation, cellular automaton, surface coverage, convex corner, pit nucleation, step propagation

The dependence of the etch rates of different crystallographic orientations on the surface coverage by OH radicals is studied by atomistic simulations using a cellular automaton. We show that the etch rate is a non-monotonic function of OH coverage and that there always exists a coverage value at which the etch rate reaches a maximum. The dependence of the anisotropy of the etching process on coverage, including the dependence of the fastest-etched plane orientation, is implicitly contained in the model, and predictions of convex-corner under-etching structures are made. We show that the entire etching process, including the interplay between step propagation and etch pitting at any surface orientation, is controlled by only a few surface configurations involving a particular type of next-nearest neighbours.