Integrated Fabrication of Polymeric Devices for Biological Applications

Mark J. Kastantin1,2, Sheng Li1,2, Anand P. Gadre1,2, Li-Qun Wu3,4, William E. Bentley3,5, Gregory F. Payne3,4, Gary W. Rubloff2,6 and Reza Ghodssi1,2,*

1Department of Electrical and Computer Engineering, University of Maryland (UMD) A.V. Williams Building, College Park, MD 20742, USA
2Inst. for Systems Research, UMD, A.V. Williams Building, College Park, MD 20742, USA
3Center for Biosystems Research, UMBI, College Park, MD 20742, USA
4Department of Chemical and Biochemical Engineering, UMBC, Baltimore, MD 21250, USA
5Dept. of Chemical Engineering, UMD, A.V. Williams Building, College Park, MD 20742, USA
6Dept. of Materials and Nuclear Engineering, UMD, A.V. Williams Building, College Park, MD 20742, USA

(Received May 8, 2003; accepted July 22, 2003)

Key words: integrative polymeric fabrication, SU-8, polypyrrole (PPy), polydimethylsiloxane (PDMS), chitosan, green fluorescent protein (GFP), bonding

A novel fabrication technique for all-polymeric, microfluidic bio-MEMS devices is presented. This device uses selective electrodeposition of a bio-polymer, chitosan, to successfully create an environment for complex biological experiments within an SU-8 microchannel. The surface energy between SU-8 and PDMS is measured to be 0.047 \pm 0.018 J/m2, allowing for reversible encapsulation of the microfluidic channel. The conducting material, polypyrrole, has a conductivity of 47 \pm 5 S/cm and is explored as a replacement for metal electrodes in future work. It is the successful integration of these four polymers, however, that enables such versatile devices to be fabricated.

*Corresponding author, e-mail address: ghodssi@eng.umd.edu