Growth of Heavily Boron-Doped Polycrystalline Superconducting Diamond

Hitoshi Umezawa¹,²,³, Tomohiro Takenouchi¹, Kensaku Kobayashi¹, Yoshihiko Takano², Masanori Nagao², Minoru Tachiki², Takeshi Hatano² and Hiroshi Kawarada¹

¹School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjyuku-ku, Tokyo 169-8555, Japan
²National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
³National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

(Received 21 January 2007; accepted 24 April 2007)

Key words: diamond, superconductivity, heavily boron-doped, transition temperature

The introduction of a high concentration of boron into polycrystalline diamond films is realized by the chemical vapor deposition of the films. The growth parameter α, which is determined as the growth direction, depends on growth conditions such as the methane concentrations and B/C ratio. With an increase in methane concentration or B/C ratio, <111>-faceted growth is frequently observed. From X-ray diffraction measurement, the <111>-textured growth of the film is confirmed under high-α conditions. The diamond film grown, which has an extremely low resistivity (1.23 mΩcm), shows a transition to superconductivity at 5.6 K. For films grown under high-α conditions, for which the surface energy of the {111} face is low, a higher T_c is observed.

*Corresponding author: e-mail: hitoshi.umezawa@aist.go.jp